Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 394: 110986, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583853

RESUMEN

Snake venom metalloproteases (SVMPs) are hydrolytic enzymes dependent on metal binding, primarily zinc (Zn2+), at their catalytic site. They are classified into three classes (P-I to P-III). BjussuMP-II, a P-I SVMP isolated from Bothrops jararacussu snake venom, has a molecular mass of 24 kDa. It exhibits inhibitory activity on platelet aggregation and hydrolyzes fibrinogen. TNF-α upregulates the expression of adhesion molecules on endothelial cell surfaces, promoting leukocyte adhesion and migration during inflammation. Literature indicates that SVMPs may cleave the TNF-α precursor, possibly due to significant homology between metalloproteases from mammalian extracellular matrix and SVMPs. This study aimed to investigate BjussuMP-II's effects on human umbilical vein endothelial cells (HUVEC), focusing on viability, detachment, adhesion, release, and cleavage of TNF-α, IL-1ß, IL-6, IL-8, and IL-10. HUVEC were incubated with BjussuMP-II (1.5-50 µg/mL) for 3-24 h. Viability was determined using LDH release, MTT metabolization, and 7AAD for membrane integrity. Adhesion and detachment were assessed by incubating cells with BjussuMP-II and staining with Giemsa. Cytokines were quantified in HUVEC supernatants using EIA. TNF-α cleavage was evaluated using supernatants from PMA-stimulated cells or recombinant TNF-α. Results demonstrated BjussuMP-II's proteolytic activity on casein. It was not toxic to HUVEC at any concentration or duration studied but interfered with adhesion and promoted detachment. PMA induced TNF-α release by HUVEC, but this effect was not observed with BjussuMP-II, which cleaved TNF-α. Additionally, BjussuMP-II cleaved IL-1ß, IL-6, and IL-10. These findings suggest that the zinc metalloprotease BjussuMP-II could be a valuable biotechnological tool for treating inflammatory disorders involving cytokine deregulation.

2.
Life Sci ; 308: 120962, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113732

RESUMEN

l-Amino acid oxidase isolated from Calloselasma rhodostoma (Cr-LAAO) snake venom is a potent stimulus for neutrophil activation and production of inflammatory mediators, contributing to local inflammatory effects in victims of envenoming. Cr-LAAO triggered the activation of nicotinamide adenine dinucleotide phosphatase (NADPH) oxidase complex and protein kinase C (PKC)-α signaling protein for reactive oxygen species (ROS) production. This study aims to evaluate the ROS participation in the NLRP3 inflammasome complex activation in human neutrophil. Human neutrophils were isolated and stimulated for 1 or 2 h with RPMI (negative control), LPS (1 µg/mL, positive control) or Cr-LAAO (50 µg/mL). The neutrophil transcriptome was examined using the microarray technique, and RT-qPCR for confirmation of gene expression. Immunofluorescence assays for NLRP3, caspase-1, IL-1ß and GSDMD proteins was performed by Western blot in the presence and/or absence of Apocynin, an inhibitor of NADPH oxidase. IL-1ß release was also detected in the presence and/or absence of NLRP3, caspase-1 and NADPH oxidase inhibitors. Results showed that Cr-LAAO upregulated the expression of genes that participate in the NADPH oxidase complex formation and inflammasome assembly. NLRP3 was activated and accumulated in the cytosol forming punctas, indicating its activation. Gasdermin D was not cleaved but lactate dehydrogenase was released. Furthermore, ROS inhibition decreased the expression of NLRP3 inflammasome complex proteins, as observed by protein expression in the presence and/or absence of apocynin, an NADPH oxidase inhibitor. IL-1ß was also released, and pharmacological inhibition of NLRP3, caspase-1, and ROS reduced the amount of released cytokine. This is the first report demonstrating the activation of the NLRP3 inflammasome complex via ROS generation by Cr-LAAO, which may lead to the development of local inflammatory effects observed in snakebite victims.


Asunto(s)
Inflamasomas , L-Aminoácido Oxidasa , Acetofenonas , Caspasa 1/metabolismo , Citocinas/metabolismo , Humanos , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , L-Aminoácido Oxidasa/metabolismo , L-Aminoácido Oxidasa/farmacología , Lactato Deshidrogenasas/metabolismo , Lipopolisacáridos/farmacología , NAD/metabolismo , NADP/metabolismo , NADPH Oxidasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neutrófilos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Quinasa C/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Venenos de Serpiente/metabolismo , Venenos de Serpiente/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...